Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Inorg Biochem ; 245: 112257, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37229820

RESUMEN

Kinetic and structural investigations of the flavohemoglobin-type NO dioxygenase have suggested critical roles for transient Fe(III)O2 complex formation and O2-forced movements affecting hydride transfer to the FAD cofactor and electron-transfer to the Fe(III)O2 complex. Stark-effect theory together with structural models and dipole and internal electrostatic field determinations provided a semi-quantitative spectroscopic method for investigating the proposed Fe(III)O2 complex and O2-forced movements. Deoxygenation of the enzyme causes Stark effects on the ferric heme Soret and charge-transfer bands revealing the Fe(III)O2 complex. Deoxygenation also elicits Stark effects on the FAD that expose forces and motions that create a more restricted NADH access to FAD for hydride transfer and switch electron-transfer off. Glucose also forces the enzyme toward an off state. Amino acid substitutions at the B10, E7, E11, G8, D5, and F7 positions influence the Stark effects of O2 on resting heme spin states and FAD consistent with the proposed roles of the side chains in the enzyme mechanism. Deoxygenation of ferric myoglobin and hemoglobin A also induces Stark effects on the hemes suggesting a common 'oxy-met' state. The ferric myoglobin and hemoglobin heme spectra are also glucose-responsive. A conserved glucose or glucose-6-phosphate binding site is found bridging the BC-corner and G-helix in flavohemoglobin and myoglobin suggesting novel allosteric effector roles for glucose or glucose-6-phosphate in the NO dioxygenase and O2 storage functions. The results support the proposed roles of a ferric O2 intermediate and protein motions in regulating electron-transfer during NO dioxygenase turnover.


Asunto(s)
Hierro , Mioglobina , Hierro/química , Mioglobina/química , Oxígeno/química , Electrones , Glucosa-6-Fosfato , Hemo/química , Óxido Nítrico/metabolismo
3.
J Biol Chem ; 296: 100550, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33744295

RESUMEN

Retroviral integrases must navigate host DNA packaged as chromatin during integration of the viral genome. Prototype foamy virus (PFV) integrase (IN) forms a tetramer bound to two viral DNA (vDNA) ends in a complex termed an intasome. PFV IN consists of four domains: the amino terminal extension domain (NED), amino terminal domain (NTD), catalytic core domain (CCD), and carboxyl terminal domain (CTD). The domains of the two inner IN protomers have been visualized, as well as the CCDs of the two outer IN protomers. However, the roles of the amino and carboxyl terminal domains of the PFV intasome outer subunits during integration to a nucleosome target substrate are not clear. We used the well-characterized 601 nucleosome to assay integration activity as well as intasome binding. PFV intasome integration to 601 nucleosomes occurs in clusters at four independent sites. We find that the outer protomer NED and NTD domains have no significant effects on integration efficiency, site selection, or binding. The CTDs of the outer PFV intasome subunits dramatically affect nucleosome binding but have little effect on total integration efficiency. The outer PFV IN CTDs did significantly alter the integration efficiency at one site. Histone tails also significantly affect intasome binding, but have little impact on PFV integration efficiency or site selection. These results indicate that binding to nucleosomes does not correlate with integration efficiency and suggests most intasome-binding events are unproductive.


Asunto(s)
Histonas/metabolismo , Integrasas/metabolismo , Nucleosomas/metabolismo , Spumavirus/metabolismo , Proteínas Virales/metabolismo , Integración Viral , Dominio Catalítico , Cromatina/genética , Cromatina/metabolismo , ADN Viral/genética , ADN Viral/metabolismo , Genoma Viral , Humanos , Integrasas/genética , Multimerización de Proteína , Spumavirus/genética , Spumavirus/crecimiento & desarrollo , Proteínas Virales/química , Proteínas Virales/genética
4.
J Biol Chem ; 296: 100186, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33310705

RESUMEN

The substrates O2 and NO cooperatively activate the NO dioxygenase function of Escherichia coli flavohemoglobin. Steady-state and transient kinetic measurements support a structure-based mechanistic model in which O2 and NO movements and conserved amino acids at the E11, G8, E2, E7, B10, and F7 positions within the globin domain control activation. In the cooperative and allosteric mechanism, O2 migrates to the catalytic heme site via a long hydrophobic tunnel and displaces LeuE11 away from the ferric iron, which forces open a short tunnel to the catalytic site gated by the ValG8/IleE15 pair and LeuE11. NO permeates this tunnel and leverages upon the gating side chains triggering the CD loop to furl, which moves the E and F-helices and switches an electron transfer gate formed by LysF7, GlnE7, and water. This allows FADH2 to reduce the ferric iron, which forms the stable ferric-superoxide-TyrB10/GlnE7 complex. This complex reacts with internalized NO with a bimolecular rate constant of 1010 M-1 s-1 forming nitrate, which migrates to the CD loop and unfurls the spring-like structure. To restart the cycle, LeuE11 toggles back to the ferric iron. Actuating electron transfer with O2 and NO movements averts irreversible NO poisoning and reductive inactivation of the enzyme. Together, structure snapshots and kinetic constants provide glimpses of intermediate conformational states, time scales for motion, and associated energies.


Asunto(s)
Dihidropteridina Reductasa/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , NADH NADPH Oxidorreductasas/metabolismo , Oxigenasas/metabolismo , Regulación Alostérica , Dihidropteridina Reductasa/química , Escherichia coli/química , Infecciones por Escherichia coli/microbiología , Proteínas de Escherichia coli/química , Humanos , Modelos Moleculares , NADH NADPH Oxidorreductasas/química , Óxido Nítrico/metabolismo , Oxigenasas/química , Conformación Proteica
5.
PLoS One ; 14(3): e0212764, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30865665

RESUMEN

Eukaryotic DNA binding proteins must access genomic DNA that is packaged into chromatin in vivo. During a productive infection, retroviral integrases (IN) must similarly interact with chromatin to integrate the viral cDNA genome. Here we examine the role of nucleosome DNA unwrapping in the retroviral integrase search for a target site. These studies utilized PFV intasomes that are comprised of a tetramer of PFV IN with two oligomers mimicking the viral cDNA ends. Modified recombinant human histones were used to generate nucleosomes with increased unwrapping rates at different DNA regions. These modifications included the acetylmimetic H3(K56Q) and the chemically engineered H4(K77ac, K79ac). While transcription factors and DNA damage sensors may search nucleosome bound DNA during transient unwrapping, PFV intasome mediated integration appears to be unaffected by increased nucleosome unwrapping. These studies suggest PFV intasomes do not utilize nucleosome unwrapping to search nucleosome targets.


Asunto(s)
ADN Viral/metabolismo , Genoma Viral , Nucleosomas/metabolismo , Spumavirus/metabolismo , Integración Viral/fisiología , Sistema Libre de Células/química , Sistema Libre de Células/metabolismo , ADN Viral/química , Histonas/química , Histonas/metabolismo , Humanos , Nucleosomas/química , Spumavirus/química
6.
J Biol Chem ; 285(31): 23850-7, 2010 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-20511233

RESUMEN

Cytoglobin (Cygb) was investigated for its capacity to function as a NO dioxygenase (NOD) in vitro and in hepatocytes. Ascorbate and cytochrome b(5) were found to support a high NOD activity. Cygb-NOD activity shows respective K(m) values for ascorbate, cytochrome b(5), NO, and O(2) of 0.25 mm, 0.3 microm, 40 nm, and approximately 20 microm and achieves a k(cat) of 0.5 s(-1). Ascorbate and cytochrome b(5) reduce the oxidized Cygb-NOD intermediate with apparent second order rate constants of 1000 m(-1) s(-1) and 3 x 10(6) m(-1) s(-1), respectively. In rat hepatocytes engineered to express human Cygb, Cygb-NOD activity shows a similar k(cat) of 1.2 s(-1), a K(m)(NO) of 40 nm, and a k(cat)/K(m)(NO) (k'(NOD)) value of 3 x 10(7) m(-1) s(-1), demonstrating the efficiency of catalysis. NO inhibits the activity at [NO]/[O(2)] ratios >1:500 and limits catalytic turnover. The activity is competitively inhibited by CO, is slowly inactivated by cyanide, and is distinct from the microsomal NOD activity. Cygb-NOD provides protection to the NO-sensitive aconitase. The results define the NOD function of Cygb and demonstrate roles for ascorbate and cytochrome b(5) as reductants.


Asunto(s)
Globinas/metabolismo , Hepatocitos/citología , Oxigenasas/metabolismo , Animales , Ácido Ascórbico/química , Células CACO-2 , Catálisis , Línea Celular Tumoral , Citocromos b5/química , Citoglobina , Globinas/química , Hemo/química , Hepatocitos/metabolismo , Humanos , Cinética , Proteínas del Tejido Nervioso/química , Neuroglobina , Óxido Nítrico/química , Ratas
7.
J Inorg Biochem ; 100(4): 542-50, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16439024

RESUMEN

Distantly related members of the hemoglobin (Hb) superfamily including red blood cell Hb, muscle myoglobin (Mb) and the microbial flavohemoglobin (flavoHb) dioxygenate nitric oxide (.NO). The reaction serves important roles in .NO metabolism and detoxification throughout the aerobic biosphere. Analysis of the stoichiometric product nitrate shows greater than 99% double O-atom incorporation from Hb(18)O(2), Mb(18)O(2) and flavoHb(18)O(2) demonstrating a conserved high fidelity .NO dioxygenation mechanism. Whereas, reactions of .NO with the structurally unrelated Turbo cornutus MbO(2) or free superoxide radical (-O.(2)) yield sub-stoichiometric nitrate showing low fidelity O-atom incorporation. These and other results support a .NO dioxygenation mechanism involving (1) rapid reaction of .NO with a Fe(III-)O.(2) intermediate to form Fe(III-)OONO and (2) rapid isomerization of the Fe(III-)OONO intermediate to form nitrate. A sub-microsecond isomerization event is hypothesized in which the O-O bond homolyzes to form a protein caged [Fe(IV)O .NO(2)] intermediate and ferryl oxygen attacks .NO(2) to form nitrate. Hb functions as a .NO dioxygenase by controlling O(2) binding and electrochemistry, guiding .NO diffusion and reaction, and shielding highly reactive intermediates from solvent water and biomolecules.


Asunto(s)
Hemoglobinas/química , Óxido Nítrico/química , Oxígeno/química , Animales , Catálisis , Dihidropteridina Reductasa/metabolismo , Proteínas de Escherichia coli/metabolismo , Compuestos Férricos/química , Compuestos Férricos/metabolismo , Hemoproteínas/metabolismo , Hemoglobinas/metabolismo , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Hierro/química , Hierro/metabolismo , Mioglobina/metabolismo , NADH NADPH Oxidorreductasas/metabolismo , Nitratos/metabolismo , Óxido Nítrico/metabolismo , Oxígeno/metabolismo , Cachalote/metabolismo
8.
Antimicrob Agents Chemother ; 49(5): 1837-43, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15855504

RESUMEN

Flavohemoglobins metabolize nitric oxide (NO) to nitrate and protect bacteria and fungi from NO-mediated damage, growth inhibition, and killing by NO-releasing immune cells. Antimicrobial imidazoles were tested for their ability to coordinate flavohemoglobin and inhibit its NO dioxygenase (NOD) function. Miconazole, econazole, clotrimazole, and ketoconazole inhibited the NOD activity of Escherichia coli flavohemoglobin with apparent K(i) values of 80, 550, 1,300, and 5,000 nM, respectively. Saccharomyces cerevisiae, Candida albicans, and Alcaligenes eutrophus enzymes exhibited similar sensitivities to imidazoles. Imidazoles coordinated the heme iron atom, impaired ferric heme reduction, produced uncompetitive inhibition with respect to O(2) and NO, and inhibited NO metabolism by yeasts and bacteria. Nevertheless, these imidazoles were not sufficiently selective to fully mimic the NO-dependent growth stasis seen with NOD-deficient mutants. The results demonstrate a mechanism for NOD inhibition by imidazoles and suggest a target for imidazole engineering.


Asunto(s)
Antibacterianos/farmacología , Dihidropteridina Reductasa/antagonistas & inhibidores , Inhibidores Enzimáticos , Proteínas de Escherichia coli/antagonistas & inhibidores , Hemoproteínas/antagonistas & inhibidores , Imidazoles/farmacología , NADH NADPH Oxidorreductasas/antagonistas & inhibidores , Oxigenasas/antagonistas & inhibidores , Candida albicans/efectos de los fármacos , Candida albicans/enzimología , Dihidropteridina Reductasa/genética , Escherichia coli/efectos de los fármacos , Escherichia coli/enzimología , Proteínas de Escherichia coli/genética , Flavina-Adenina Dinucleótido/metabolismo , Hemo/metabolismo , Hemoproteínas/genética , Cinética , NAD/metabolismo , NADH NADPH Oxidorreductasas/genética , Óxido Nítrico/metabolismo , Oxidación-Reducción , Oxigenasas/genética , Plásmidos
9.
Free Radic Biol Med ; 37(2): 216-28, 2004 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-15203193

RESUMEN

Human intestinal Caco-2 cells metabolize and detoxify NO via a dioxygen- and NADPH-dependent, cyanide- and CO-sensitive pathway that yields nitrate. Enzymes catalyzing NO dioxygenation fractionate with membranes and are enriched in microsomes. Microsomal NO metabolism shows apparent KM values for NO, O2, and NADPH of 0.3, 9, and 2 microM, respectively, values similar to those determined for intact or digitonin-permeabilized cells. Similar to cellular NO metabolism, microsomal NO metabolism is superoxide-independent and sensitive to heme-enzyme inhibitors including CO, cyanide, imidazoles, quercetin, and allicin-enriched garlic extract. Selective inhibitors of several cytochrome P450s and heme oxygenase fail to inhibit the activity, indicating limited roles for a subset of microsomal heme enzymes in NO metabolism. Diphenyleneiodonium and cytochrome c(III) inhibit NO metabolism, suggesting a role for the NADPH-cytochrome P450 oxidoreductase (CYPOR). Involvement of CYPOR is demonstrated by the specific inhibition of the NO metabolic activity by inhibitory anti-CYPOR IgG. In toto, the results suggest roles for a microsomal CYPOR-coupled and heme-dependent NO dioxygenase in NO metabolism, detoxification, and signal attenuation in mammalian cells.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Microsomas Hepáticos/enzimología , NADPH-Ferrihemoproteína Reductasa/metabolismo , Óxido Nítrico/metabolismo , Oxigenasas/metabolismo , Células CACO-2 , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Radicales Libres , Hemo Oxigenasa (Desciclizante)/metabolismo , Hemoglobinas/metabolismo , Humanos , Inmunoglobulina G/química , Cinética , Microsomas/metabolismo , Modelos Químicos , NADPH-Ferrihemoproteína Reductasa/antagonistas & inhibidores , Óxido Nítrico/química , Oxígeno/metabolismo , Oxigenasas/antagonistas & inhibidores , Transducción de Señal , Fracciones Subcelulares/metabolismo , Superóxidos/metabolismo , Factores de Tiempo , Zinc/química
10.
Methods Mol Biol ; 279: 133-50, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15199242

RESUMEN

Nitric oxide (NO) serves critical signaling, energetic, and toxic functions throughout the biosphere. NO steady-state levels and functions are controlled in part by NO metabolism or degradation. Dioxygen-dependent NO dioxygenases (EC 1.14.12.17) and dioxygen-independent NO reductases (EC 1.7.99.7) are being identified as major routes for NO metabolism in various life forms. Here we describe the use of the Clark-type NO electrode, mechanistic inhibitors, and nitrate/nitrite assays to measure, characterize, and identify major NO metabolic pathways and enzymes in bacteria, fungi, plants, mammalian cells, and organelles. The methods may prove to be particularly useful for mechanistic investigations and the development of inhibitors, inducers, and other novel NO-modulating therapeutics.


Asunto(s)
Electrodos de Iones Selectos , Nitratos/metabolismo , Óxido Nítrico/metabolismo , Nitritos/metabolismo , Oxígeno/metabolismo , Animales , Bovinos , Inhibidores Enzimáticos/farmacología , Oxidorreductasas/antagonistas & inhibidores , Oxidorreductasas/metabolismo , Superóxido Dismutasa/antagonistas & inhibidores , Superóxido Dismutasa/metabolismo
11.
J Biol Chem ; 278(12): 10081-6, 2003 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-12529359

RESUMEN

Nitric oxide (NO) induces NO-detoxifying enzymes in Escherichia coli suggesting sensitive mechanisms for coordinate control of NO defense genes in response to NO stress. Exposure of E. coli to sub-micromolar NO levels under anaerobic conditions rapidly induced transcription of the NO reductase (NOR) structural genes, norV and norW, as monitored by lac gene fusions. Disruption of rpoN (sigma(54)) impaired the NO-mediated induction of norV and norW transcription and NOR expression, whereas disruption of the upstream regulatory gene, norR, completely ablated NOR induction. NOR inducibility was restored to NorR null mutants by expressing NorR in trans. Furthermore, an internal deletion of the N-terminal domain of NorR activated NOR expression independent of NO exposure. Neither NorR nor sigma(54) was essential for NO-mediated induction of the NO dioxygenase (flavohemoglobin) encoded by hmp. However, elevated NOR activity inhibited NO dioxygenase induction, and, in the presence of dioxygen, NO dioxygenase inhibited norV induction by NO. The results demonstrate the role of NorR as a sigma(54)-dependent regulator of norVW expression. A role for the NorR N-terminal domain as a transducer or sensor for NO is suggested.


Asunto(s)
Proteínas de Unión al ADN , ARN Polimerasas Dirigidas por ADN/fisiología , Escherichia coli/genética , Óxido Nítrico/metabolismo , Operón/fisiología , Factor sigma/fisiología , Secuencia de Aminoácidos , Escherichia coli/metabolismo , Proteínas de Escherichia coli , Datos de Secuencia Molecular , Oxidación-Reducción , ARN Polimerasa Sigma 54 , Transcripción Genética
12.
Mol Microbiol ; 45(5): 1303-14, 2002 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12207698

RESUMEN

Nitric oxide (NO), generated in large amounts within the macrophages, controls and restricts the growth of internalized human pathogen, Mycobacterium tuberculosis H37Rv. The molecular mechanism by which tubercle bacilli survive within macrophages is currently of intense interest. In this work, we have demonstrated that dimeric haemoglobin, HbN, from M. tuberculosis exhibits distinct nitric oxide dioxygenase (NOD) activity and protects growth and cellular respiration of heterologous hosts, Escherichia coli and Mycobacterium smegmatis, from the toxic effect of exogenous NO and the NO-releasing compounds. A flavohaemoglobin (HMP)-deficient mutant of E. coli, unable to metabolize NO, acquired an oxygen-dependent NO consumption activity in the presence of HbN. On the basis of cellular haem content, the specific NOD activity of HbN was nearly 35-fold higher than the single-domain Vitreoscilla haemoglobin (VHb) but was sevenfold lower than the two-domain flavohaemoglobin. HbN-dependent NO consumption was sustained with repeated addition of NO, demonstrating that HbN is catalytically reduced within E. coli. Aerobic growth and respiration of a flavohaemoglobin (HMP) mutant of E. coli was inhibited in the presence of exogenous NO but remained insensitive to NO inhibition when these cells produced HbN, VHb or flavohaemoglobin. M. smegmatis, carrying a native HbN very similar to M. tuberculosis HbN, exhibited a 7.5-fold increase in NO uptake when exposed to gaseous NO, suggesting NO-induced NOD activity in these cells. In addition, expression of plasmid-encoded HbN of M. tuberculosis in M. smegmatis resulted in 100-fold higher NO consumption activity than the isogenic control cells. These results provide strong experimental evidence in support of NO scavenging and detoxification function for the M. tuberculosis HbN. The catalytic NO scavenging by HbN may be highly advantageous for the survival of tubercle bacilli during infection and pathogenesis.


Asunto(s)
Dihidropteridina Reductasa , Escherichia coli/metabolismo , Hemoglobinas/metabolismo , Mycobacterium tuberculosis/metabolismo , NADH NADPH Oxidorreductasas , Óxido Nítrico/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Secuencia de Bases , ADN Bacteriano/genética , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Genes Bacterianos , Hemoproteínas/genética , Hemoproteínas/metabolismo , Hemoglobinas/química , Hemoglobinas/genética , Humanos , Datos de Secuencia Molecular , Mutación , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/crecimiento & desarrollo , Mycobacterium smegmatis/metabolismo , Mycobacterium tuberculosis/genética , Consumo de Oxígeno , Oxigenasas/genética , Oxigenasas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido , Hemoglobinas Truncadas
13.
J Biol Chem ; 277(10): 8166-71, 2002 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-11751864

RESUMEN

Nitric-oxide dioxygenase (NOD) and reductase (NOR) activities of flavohemoglobin (flavoHb) have been suggested as mechanisms for NO metabolism and detoxification in a variety of microbes. Mechanisms of NO detoxification were tested in Escherichia coli using flavoHb-deficient mutants and overexpressors. flavoHb showed negligible anaerobic NOR activity and afforded no protection to the NO-sensitive aconitase or the growth of anoxic E. coli, whereas the NOD activity and the protection afforded with O(2) were substantial. A NO-inducible, O(2)-sensitive, and cyanide-resistant NOR activity efficiently metabolized NO and protected anaerobic cells from NO toxicity independent of the NOR activity of flavoHb. flavoHb possesses nitrosoglutathione and nitrite reductase activities that may account for the protection it affords against these agents. NO detoxification by flavoHb occurs most effectively via O(2)-dependent NO dioxygenation.


Asunto(s)
Dihidropteridina Reductasa , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Hemoproteínas/química , Hemoproteínas/metabolismo , NADH NADPH Oxidorreductasas , Óxido Nítrico/metabolismo , Oxígeno/metabolismo , Oxigenasas/química , Oxigenasas/metabolismo , Aconitato Hidratasa/metabolismo , División Celular , Cianuros/metabolismo , Cianuros/farmacología , Mutación , Unión Proteica , Factores de Tiempo
14.
J Biol Chem ; 277(10): 8172-7, 2002 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-11751865

RESUMEN

Nitric oxide (NO) is a poison, and organisms employ diverse systems to protect against its harmful effects. In Escherichia coli, ygaA encodes a transcription regulator (b2709) controlling anaerobic NO reduction and detoxification. Adjacent to ygaA and oppositely transcribed are ygaK (encoding a flavorubredoxin (flavoRb) (b2710) with a NO-binding non-heme diiron center) and ygbD (encoding a NADH:(flavo)Rb oxidoreductase (b2711)), which function in NO reduction and detoxification. Mutation of either ygaA or ygaK eliminated inducible anaerobic NO metabolism, whereas ygbD disruption partly impaired the activity. NO-sensitive [4Fe-4S] (de)hydratases, including the Krebs cycle aconitase and the Entner-Doudoroff pathway 6-phosphogluconate dehydratase, were more susceptible to inactivation in ygaK or ygaA mutants than in the parental strain, and these metabolic poisonings were associated with conditional growth inhibitions. flavoRb (NO reductase) and flavohemoglobin (NO dioxygenase) maximally metabolized and detoxified NO in anaerobic and aerobic E. coli, respectively, whereas both enzymes scavenged NO under microaerobic conditions. We suggest designation of the ygaA-ygaK-ygbD gene cluster as the norRVW modulon for NO reduction and detoxification.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Escherichia coli/metabolismo , Óxido Nítrico/metabolismo , Factores de Transcripción/química , Factores de Transcripción/genética , Aconitato Hidratasa/farmacología , Cromosomas/genética , Elementos Transponibles de ADN , Relación Dosis-Respuesta a Droga , Escherichia coli/genética , Proteínas de Escherichia coli/biosíntesis , Hidroliasas/metabolismo , Hidroliasas/farmacología , Modelos Genéticos , Modelos Moleculares , Familia de Multigenes , Mutagénesis , Mutación , Operón , Plásmidos/metabolismo , Unión Proteica , Factores de Tiempo , Factores de Transcripción/biosíntesis , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...